Algebra Review Notes

Simplifying Radical Expressions

Name: \qquad
Date: \qquad Pd: \qquad

There are two properties we can use to rewrite radical expressions.
A. The square root of a product equals the product of the square roots of its factors.

$$
\sqrt{a b}=\sqrt{a} \cdot \sqrt{b} \quad \text { Product Property of Radicals }
$$

B. The square root of a quotient equals the quotient of the square roots of its numerator and denominator.

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}} \quad \text { Quotient Property of Radicals }
$$

These properties can be used to write radical expressions in simplest radical form. An expression with radicals is in simplest radical form if the following are true.

1. No radicands (expressions under radical signs) have perfect square factors other than 1.

$$
\sqrt{8}=\sqrt{4 \cdot 2}=\sqrt{4} \cdot \sqrt{2}=2 \sqrt{2}
$$

2. No radicands contain fractions.

$$
\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{\sqrt{4}}=\frac{\sqrt{3}}{2}
$$

3. No radicals appear in the denominator of a fraction.

$$
\frac{5}{\sqrt{6}}=\frac{5}{\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}}=\frac{5 \sqrt{6}}{\sqrt{36}}=\frac{5 \sqrt{6}}{6}
$$

Simplify each radical expression. Show all steps and circle your answer.

1. $\sqrt{75}$
2. $\sqrt{27}$
3. $\sqrt{180}$
4. $-\sqrt{200}$
5. $\sqrt{\frac{49}{121}}$
6. $\sqrt{\frac{12}{81}}$
7. $\frac{3}{\sqrt{12}}$
8. $\frac{8}{\sqrt{18}}$
9. $\sqrt{\frac{1}{8}}$
10. $\sqrt{\frac{3}{5}}$

Perform the indicated operations. Write your answers in SRF.
11. $\frac{1}{3} \sqrt{63}$
12. $3 \sqrt{\frac{5}{6}}$
13. $\sqrt{10} \cdot \sqrt{20}$
14. $\sqrt{2} \cdot \sqrt{3} \cdot \sqrt{6}$
15. $(7 \sqrt{3})^{2}$
16. $\left(\frac{2}{3} \sqrt{3}\right)^{2}$
17. $\frac{2 \sqrt{5}}{\sqrt{4}}$
18. $\frac{6}{\sqrt{3}}$
19. $3 \pm \sqrt{40}$
20. $\frac{-4 \pm \sqrt{32}}{2}$
21. $\frac{-15 \pm \sqrt{50}}{10}$
22. $\frac{-2 \pm \sqrt{(2)^{2}-4(6)(-1)}}{8}$

